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A train of uniform two-dimensional gravity waves in deep water is known to be 
unstable to certain sideband disturbances. If the time of propagation is sufficiently long 
for the fourth-order terms to be important, the sidebands may grow at unequal rates, 
resulting in a downward shift of peak frequency. But this shift is only a temporary 
phase of a recurrent evolution process. Recent work by us (Hara & Mei 1991) has 
shown that wind and dissipation can help maintain this downshift at large time. In this 
paper we examine a similar two-dimensional problem for capillary-gravity waves. The 
basic flow in air and water is assumed to be steady, horizontally uniform and turbulent; 
the wave-induced flow in both media is assumed to be laminar. Evolution equations are 
deduced with wind and dissipation included in such a way that their influence is 
comparable to the asymmetric spectral evolution. After finding the initial growth rates 
of unstable sidebands, the nonlinear development of modulational instability is 
examined by integrating the evolution equations numerically. Computed results show 
that persistent downshift of frequency can happen for relatively long waves, but upshift 
occurs for very short waves. 

1. Introduction 
Gravity-capillary waves are known to play an important role in the initial stage of 

wind-wave generation. Recent advances in satellite remote sensing have spurred 
intensive interest in the dynamics of gravity-capillary waves since they are responsible 
for the Bragg scattering of short radar signals. A complete account of the evolution of 
the gravity-capillary wave spectrum is however complicated since it must involve 
wave-wave interaction, energy and momentum transfer from the wind, and possibly 
wave breaking. The last aspect cannot yet be treated by existing theoretical means. 
While the first two factors have been investigated separately, understanding of their 
combined effects is wanting. 

In the gravity-capillary range, wave-wave interaction is possible among three 
distinctive wavenumbers (McGoldrick 1965). However, for relatively long gravity- 
capillary waves four-wave interaction can be significant, which includes as a 
special case the problem of sideband instability. The nonlinear envelope equation and 
the linearized instability of side bands for gravity-capillary waves were first obtained 
by Djordjevic & Redekopp (1977) up to third order of wave steepness. Extension to the 
fourth order in the manner of Dysthe (1979) was made by Hogan (1985) for deep 
water, who also performed the linear instability analysis. Calculations of the nonlinear 
evolution of the unstable sidebands have apparently not yet been reported in the 
literature. 
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Studies of the wind generation of gravity-capillary waves have been mainly focused 
on the initial stage of unstable growth. In his linearized analysis of instability, Miles 
(196 1) solved the Orr-Sommerfeld equation for the wave-induced disturbances in air 
for a linear-logarithmic wind profile. His theory was extended by Valenzuela (1976) for 
a coupled air-water system. Laboratory measurements of wave growth rate were 
conducted by Larson & Wright (1975) who observed broad-banded wind-generated 
waves. Kawai (1979) studied the generation of initial wavelets both theoretically and 
experimentally. His calculations of the wavenumber and the growth rate of the most 
unstable mode agreed well with measured values. It has also been noted that after the 
initial wavelets attain certain magnitude, the peak of the wave spectrum begins to 
migrate to lower frequency while the wave surface pattern becomes more irregular. A 
similar phenomenon of frequency downshift is known to exist in surface gravity waves. 
Van Gastel, Janssen & Komen (1985) also examined the initial growth rate of 
gravity-capillary waves using various shear models; they found that the growth rate 
can be very sensitive to the wind profile assumed, whereas the wind-induced current 
profile in water has much less influence. 

A nonlinear theory motivated by wind effects over waves has been given by 
Blennerhassett (1980), who derived the nonlinear evolution equation of interfacial 
waves between two viscous fluids bounded by two horizontal plates moving 
horizontally. Janssen (1986) studied the period-doubling of wind-induced gravity- 
capillary waves first observed by Choi (1977). Expanding an earlier work of Chen & 
Saffman (1979), he examined the effects of wind on Wilton’s ripples due to second- 
harmonic resonance. He incorporated a wind-energy input coefficient and assumed 
linear shear in water in the evolution equations which couple the first and second 
harmonics. Numerical calculations of the nonlinear evolution indeed gives rise to a 
rapid period doubling. This mechanism is however important only near a particular 
frequency (19.6 Hz); a more general theory for different frequencies which includes 
both wave/wave interaction and wind effect is desirable. 

For deep-water gravity waves the nonlinear mechanics of Benjamin-Feir instability 
has been studied extensively without wind. By integrating numerically the nonlinear 
Schrodinger equation, Lake et al. (1977) found that the upper and lower sidebands first 
grow at equal rates, at the expense of the carrier wave. Afterwards the carrier wave and 
the sidebands exchange energy cyclically. Extension of the Schrodinger equation to the 
fourth order in wave steepness was made by Dysthe (1979), based on which Lo & Mei 
(1985) re-examined the nonlinear evolution of side-band instability. While the lower 
sideband was found to grow faster than the upper sideband in the initial stage, 
subsequent evolution still shows a recurrence pattern. Therefore the peak frequency 
downshift is only temporary near the peaks of modulation. By incorporating 
heuristically an empirical model for breaking waves into Dysthe’s extended equation, 
Trulsen & Dysthe (1989) showed more persistent frequency downshift. Recently the 
present authors (Hara & Mei 1991) have extended the work of Lo & Mei by including 
the effect of wind input and internal dissipation. The long-time evolution of the 
sideband instability demonstrates that permanent downshift of peak frequency is 
possible without breaking. 

In this study, we shall examine whether wind and viscous dissipation may enhance 
persistent frequency shift in gravity-capillary waves. For simplicity the waves are 
assumed to be two-dimensional and narrow banded. While the basic wind and water 
current are assumed to have linear-logarithmic profiles, the wave-induced disturbance 
is assumed to be laminar, because of the very short wavelength. We also assume that 
the rates of energy input from wind and viscous dissipation are comparable to the rate 
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of asymmetric spectral growth. This assumption of course imposes constraints on the 
wind speed and the wave steepness, hence on the range of applicability of the theory. 

After presenting the basic formulation in $2, the air flow over gravity-capillary 
waves is examined in $3. In particular the wind-energy input is calculated to be a 
nonlinear function of the wave steepness. The nonlinear evolution equation of the wave 
amplitude is then derived in $4, including the effects of wind, wind-induced water 
current, and viscosity. The initial growth rate and the subsequent nonlinear evolution 
of Benjamin-Feir instability are examined in &5 and 6 respectively for three different 
wavelengths. Since the mathematical procedure is very close to that for gravity waves 
in Hara & Mei (1991), we present the basic formulation and the numerical procedure 
briefly and focus on the results, which are different from the gravity wave case. 

2. Formulation for the basic flow and wave disturbances 
Since the following analysis is very similar to the case of gravity waves, we briefly 

summarize the basic equations and assumptions. Complete derivations are given in 
Hara & Mei (1991) and are not repeated here. 

We first introduce the normalization in terms of the characteristic wavenumber of 
the free surface k ,  the acceleration due to gravity g, and the density of air p’ or of water 
p. All the equations in the following discussion are dimensionless unless stated 
otherwise. All quantities associated with air are distinguished by primes. Let (x,y)  be 
a Cartesian coordinate system with x in the common direction of the wind and the 
wave propagation, and y in the upward vertical direction. The basic wind in air 
(distinguished by the superscript b) in the absence of waves is assumed to be of a linear- 
logarithmic profile, described by 

U l b  = s’y, y < q = 5 ( d ” d ) t  

1 1 
5(d2/s’)i  + - (d2/s’); (a’ - tanh Pa’) , y > S;, 

K 

with sinh a’ = 2~(s’/a’~); 0, - 5(d2/s’):) ,  (2.2) 
where K = 0.4 is the Karman constant, d2 = v’(k3/g)i is the viscosity. parameter, 8; is 
the dimensionless thickness of the air viscous sublayer, s’ = ui2/v’(gk)f is the normalized 
wind shear, v‘ is the kinematic viscosity, and u; is the friction velocity. The same wind 
profile has been used by Miles (1957) and Kawai (1979) for the analysis of the initial 
growth of gravity-capillary waves. The normalized basic current in water is also 
assumed to be of the same form, and is obtained by removing the primes and changing 
the signs of ub and y in (2.1) and (2.2). 

The wave-induced disturbances u’, v’ (the velocities in the x, y-directions) and p‘ (the 
dynamic pressure) in air are assumed to be governed by laminar Navier-Stokes 
equations : 

8-2 
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The governing equations for wave-induced disturbances in water are obtained from 
(2.3)-(2.6) by dropping the primes. 

It is in principle possible to include the effect of air turbulence in a more direct 
manner, such as using a turbulence closure model. However, since the purpose of this 
study is not to examine the detailed structure of the modulated air flow over waves, but 
to examine the effect of wind energy input on the nonlinear evolution of water waves, 
we adopt this simple model here. 

On the interface y = [(x, t ) ,  the kinematic boundary conditions are 

ac b ac ac 
-+(u+u ) - - v  = -+(u’+u’b)--v’ = 0,  y = g 
at ax a? ax 

and U + U b  = U ‘ + U ’ b ,  v = v’ ,  y = 5. (2.8) 

We further require that the tangential derivative of the normal stress is continuous 
across the air-water interface : 

wherefd denotes the normal stress due to wind, t: is the typical wave steepness, and 6’ 
is the dimensionless air boundary-layer thickness to be examined in $3.  Similarly the 
continuity of the tangential stress yields 

wherefi denotes the tangential stress due to wind. The surface tension between air and 
water r has been normalized by 

y = rk2/pg,  (2.11) 

and (2.12) 

is the inverse of the radius of curvature of the free surface. The components n,, ny are 
of the unit vector normal to the water surface. 

In view of the much smaller lengthscale, we assume the disturbances due to 
gravity-capillary waves to be laminar. Therefore the constant eddy viscosity used in 
Hara & Mei (1991) is replaced by the kinematic viscosity. Apart from this and the 
inclusion of capillarity, the formulation here remains identical to our previous paper. 
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k lk ,  Y cT2 d2 
0.2 0.04 2.00 x 10-4 3.01 x 10-3 
0.3 0.09 3.68 x 10-4 5.52 x 10-3 
0.9 0.81 1.91 x 10-3 2.87 x 

TABLE 1 .  Values of parameters y ,  g2, d2 

A reference wavenumber k,, which corresponds to the linear waves with minimum 
phase speed, may be defined by 

k,2 = pg/T so that y = (k/k,)2. (2.13) 

For the following typical values at 20 "C: 

p = 0.998 g cmP3, p' = 0.00121 g ~ m - ~ ,  g = 980 cm c2,\ 
v = 0.0100 cm2 s-l, v' = 0.150 cm2 s-l, r = 72.8 g sP2 J (2.14) 

the value of k, is 
k, = 3.67 cm-l (2.15) 

In table 1 y, cr2 and d2 are evaluated for k/k, = 0.2, 0.3 and 0.9. 
Throughout this paper, the typical wave steepness E is assumed to be small. This 

parameter is assumed to characterize the slowness of the amplitude modulation as well, 
so as to achieve a balance between nonlinearity and dispersion. Our analysis focuses 
on the circumstance where the wave growth due to wind and the viscous dissipation in 
water are comparable with the effect of asymmetry of sideband instability, which is 
known to occur over t = O(l/e3). Therefore we set 

cr2 = Ne3, (2.16) 

where N is a constant of O( 1). This in turn imposes a constraint on the wave steepness 
E ,  since the viscosity parameter crz is a fixed small number for a given relative 
wavenumber k/k, in table 1. We shall also choose the wind strength so that the wind 
input is comparable with the viscous dissipation, i.e. so that the right-hand side of (2.9) 
is of O(e4). Although these assumptions limit the range of the wave steepness and the 
wind strength, we believe that the analysis of nearly neutral conditions is an important 
first step toward a better understanding of the subtle interplay among nonlinearity, 
dispersion, and energy input/output. 

Our basic formulation closely resembles that by Blennerhassett (1980). While he has 
subsequently analysed the third-order nonlinear evolution of a coupled air-water 
system, we decouple the air and the water problems by using the fact that the density 
of air is much smaller than that of water. This decoupling significantly simplifies the 
mathematical procedures, and enables us to examine the fourth-order nonlinear effects 
necessary for non-recurrent and asymmetric evolution in the nonlinear stage. 

3. Air flow over gravity-capillary waves 
3.1. Reduction of the boundary value problem 

Since the effect of air flow (surface stresses) on the evolution of surface waves is 
assumed to be important only at the highest order in wave steepness E ,  one needs to 
solve for the air flow only to the leading order. The kinematic boundary conditions for 
air at the interface are first determined from the leading-order wave motion in water. 
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On the other hand the basic drift current due to air flow over a plane free surface 
without waves is ub = O[(sa2)iln(s/a2)i], which can be kept at O(e) or less for certain 
range of wind intensity, as will be shown later. Therefore it has a negligible effect on 
the water wave to the leading order. 

Let the wave profile be given, to the leading order: by 

5 = &A ei(z-ct) + * 

c2 = 1 + y  = 1 +(k/k,)? 

(3.1) 

where the asterisk denotes higher-order terms, and where the normalized dispersion 
relation is 

The complex wave amplitude A is expected to be a function of long scales, and is 
written as 

where B = O(1) and D are the absolute amplitude and phase. The absolute amplitude 
B is related to the dimensional wave amplitude a by eB = ka. It is now convenient to 
introduce orthogonal curvilinear coordinates c, 7 defined by 

x - c t + D  = g-eBsince-7, y = r/+eBcos&e-v. (3 .4~:  h) 

In this moving coordinate system the wave surface is flat, 7 = 0, up to O(e); this is 
accurate enough in order to solve the air flow to the leading order in e. Let us define 
the stream function $'b of the basic flow and $' of the wave-induced flow in air by 

(3.2) 

A = BeiD, (3.3) 

(3.5) 

The governing equation for $' then becomes, 

where the Jacobian of transformation has been approximated by 1 to the leading order. 
It can be shown (Hara & Mei 1991) that the nonlinear term (the third term) is 
significant even at the leading order. Consequently the surface stresses due to wind can 
depend explicitly on the wave steepness eB, and differ from Janssen's (1986) model of 
constant energy input rate. In the first term -cy appears because of the shift of 
coordinate. The boundary conditions at the interface are derived from the orbital 
motion of the leading-order water waves: 

For the air flow far above, the wavy water surface is expected to increase the effective 
roughness. Therefore for a fixed wind stress, the wind speed decreases by a constant. 
This is due to a mechanism analogous to induced streaming outside an oscillatory 
boundary layer. We therefore impose the following boundary conditions : 

(3.8a, b) 

The constant in (3.8a), which corresponds to the decrease in wind speed, is to be found 
from the numerical solution. 
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In (2.1) and (3.6)-(3.8), there are four dimensionless parameters: the wind shear s’, 
the phase velocity c, the viscosity parameter cr’, and the wave slope sB = ka. The first 
three parameters may be rewritten in terms of the relative wavenumber k/k, ,  the 
normalized friction velocity u;/v‘kc, and a non-dimensional quantity cri E v’(k:/g)i 
which is a property of the fluid. Therefore the air flow depends only on the three 
controlling parameters k/k, ,  u;/v’kc, and EB. 

3.2. Method of solution 
The boundary value problem is solved numerically by the spectral method (Caponi 
et al. 1982). The Fourier expansion 

m 

$‘ = EB C fn(r)einc (3.9) 

is introduced into the governing equation and the boundary conditions. The resulting 
coupled nonlinear ordinary differential equations are solved by finite differences. 
Details are given in Hara (1990). 

The result is then introduced to (2.9) to calculate the variation of the normal wind 
stress on the water surface: 

n=-m 

Since the wind strength s’ is chosen so that (3.10) is 0(e4), we let 

%= Nc4 C pne  in(x-ct) 

n=-w ax 

Of particular interest is the coefficient of the first harmonic 

(3.1 I)  

(3.12) 

which is responsible for the growth and the phase shift of the wave amplitude A .  
Similarly the tangential stress defined by (2.10) can be calculated : 

f ;  % p’crr2~B 5 (3) ein(x-ct) inD 
e ,  

P n=--a0 ?/=O 

(3.13) 

which is also formally rewritten as 

m 

f ; = N e 4  C qne in(x-ct) (3.14) , 
n=-m 

where the first harmonic q1 is of O(S’). Since the zeroth harmonic qo is the result of 
nonlinearity in the governing equation (3.6), its magnitude can be estimated to be no 
greater than 0(e ) .  The mean tangential stress qo affects the phase and group velocities 
of surface waves. 

3.3. Rate of energy transfer 
The energy input rate from air to water through the normal stress is obtained by taking 
the time average of the product of the first harmonic of the normal stress f i  and the 
vertical orbital velocity v at the interface. The contribution from the tangential stress 
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FIGURE 1. Linear dimensional growth rate ,do against relative wavenumber k/k, .  The numbers indicate 
normalized friction velocity u;/v'k,. -, Calculated from normal stress only; --, calculated from 
both normal and tangential stresses; x , experiment by Kawai (1979); . . . . ., calculation by Kawai 
(1979); -.-, calculation by van Gastel et ul. (1985). 

is smaller by O(6') and is neglected. The growth rate 
and the corresponding imaginary part /? are then calculated to be 

of the wave energy due to wind 

cT2 

C , @ = 2 - I m b ) ,  C 
(3.15) 

where the latter is responsible for the phase shift of surface waves. The net growth rate 
is obtained by subtracting the well-known viscous dissipation rate in water : 

(3.16) 

The initial growth rate is the limit of zero amplitude, and is given, in dimensional form, 
as 

(3.17) 

We shall now compare our numerical results of initial growth rate with earlier works 
by Kawai (1979) and van Gastel et al. (1985). Kawai measured the growth rate of initial 
wavelets experimentally, and compared it with numerical predictions based on the 
linearized Orr-Sommerfeld equation. Van Gastel et al. gave an asymptotic solution to 
a similar Orr-Sommerfeld equation, after neglecting the contribution of the tangential 
surface stress. In both papers it has been shown that the growth rate changes 
significantly for different wind profiles in air, but it is relatively insensitive to the drift 
current profiles. 

In figure 1 the dimensional linear growth rate p,, is plotted against the relative 
wavenumber k /k ,  for various values of normalized friction velocity u',/u'k,. For 
comparison we also plot the numerical results of Kawai (dotted line) and van Gastel 
et al. (dot-dash line) for u;/v'kc z 38.9, and experimental results of Kawai for three 
different wind strengths (crosses). Our result for the very strong wind with u',/u'kc = 
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.’, 
klk ,  v’k, Sr S (sg2$ In (s/az))t 

0.2 10 7.52 0.137 0.0171 
0.3 10 6.14 0.112 0.0184 
0.3 12 8.83 0.161 0.0234 
0.9 22 17.2 0.312 0.0622 

TABLE 2. Selected values of normalized friction velocity, shear rates and measure of water current 

40 (solid line) is somewhat smaller than the numerical results by others. However, we 
have found that for relatively stronger wind or shorter waves, the second derivative of 
the perturbed air stream function i3’fl/i3$, which is the measure of the tangential stress, 
is maximum at the wave surface, while the third derivative i3”f,/i3q3 (measure of the 
normal stress) attains its maximum away from the surface. As a result the ratio of the 
tangential stress to the normal stress on the surface is numerically larger than the 
theoretical prediction of O(6’). In figure 1 the initial growth rate including the effect of 
tangential stress is also plotted by dashed lines; the agreement with other results is 
improved. We have also found similar agreement at different wind speeds (Hara 1990). 
The experimental results by Kawai are always larger than numerical values by us or 
others. The agreement can be improved if the thickness of the air viscous sublayer 8; 
is increased (Kawai 1979). However, we will not pursue other values of 8; in this study. 
In the following analysis of sideband instability we shall only examine cases where the 
wind is relatively weak; the tangential stress is less effective and therefore neglected in 
the calculation of growth rate. 

Since we are interested in the very slow evolution, the wind intensities will be selected 
such that the net growth rate is sufficiently small. Referring to figure 1, the points of 
intersection of the growth curves and the horizontal axis give the wind strength of no 
net growth for a given wavenumber. Guided by these curves several wind intensities 
have been chosen for three wavenumbers to be used later in $6,  as listed in table 2. The 
corresponding shear rates s’, s, and the measure of the water current (s(r2)i In (s/(r2)i are 
also tabulated. 

Note that for the chosen wind intensities, the wind shear s’ in air is always much 
larger than 1. On the other hand the values of the measure of the water current in the 
last column are reasonably small as assumed at the beginning of tj 3.1. The normalized 
air boundary-layer thickness 6’ can also be estimated from the values in tables 1 and 
2 to be in range of 0.05-0.12, which is indeed small. 

and the viscous dissipation rate are plotted 
for a wide range of wave slope eB = ka. The imaginary part of the wind forcing is 
also shown. The growth rate can decrease significantly as the wave steepness increases 
for longer waves (k /k ,  = 0.2,0.3), though not for shorter waves (k /kc  = 0.9). 

We now present some calculated streamlines of the air flow above the water surface. 
Figure 3 gives the stream-function contours of $’ + $’b - cy for 

k / k ,  = 0.25, u; /dkc  = 8, 12, ka = 0.1; 

k /kc  = 1, ui/v’k, = 15, 25, ka = 0.2 

in the coordinates moving with the phase velocity of the surface waves. In all cases 
there is a circulation of air at the height where the wind speed in the fixed coordinates 
equals the phase velocity. This height decreases as the wind speed increases. 

In figure 2 the nonlinear growth rate 
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FIGURE 2. Nonlinear energy input rate 8' (--), imaginary part of wind forcing p" (----), and 
dissipation rate (--), as functions of wave slope ku. (a) k l k ,  = 0.2, u;/u'k, = 10; (b) k /k ,  = 0.3, 
u;/v'kc = 10; (c) k/k ,  = 0.9, u;/v'kc = 22. 

3.4. Effective sea roughness 
Recall from (3.8a) that the wave perturbed horizontal velocity a$'/aq is finite at 
7 = co. This corresponds to a finite wind velocity shift caused by waves. In the theory 
of fully turbulent shear flow over a rough bed, the dimensional velocity U' at any 
dimensional height Y is known to be 

(3.18) 

(Schlichting 1955), where k, is the equivalent surface roughness. For a fixed u;, the 
velocity decreases as the roughness k, increases. On the other hand, the velocity profile 
over a smooth surface is 

(3.19) 

(Schlichting 1955). Equating their difference, which is due to the roughness, to the 
velocity shift due to waves, 

(3.20) 

we can calculate the equivalent roughness k, of a wavy surface to wind, for given 
wavelength, wave amplitude, and wind shear. Figure 4 shows the normalized 
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FIGURE 3. Stream-function contours of air flow over surface waves. Vertical scale is stretched by a 
factor of 2. (a) k / kc  = 0.25, u;/v'kc = 8, A$' = 0.02, ka = 0.1; (b) k lk ,  = 0.25; u;/v'k, = 12, A$' = 
0.06, ka = 0.1; (c) klk ,  = 1, u;/v'kc = 15, A$' = 0.12, ka = 0.2; ( d )  k lk ,  = 1 ,  u;/v'k, = 25, A+' = 
0.12, ka = 0.2. 
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FIGURE 4. Normalized equivalent roughness kk, as a function of wave slope ka for different 
values of normalized friction velocity u6/v'kc; k lk ,  = 0.25. 
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roughness kk, against wave slope ka for k/k, = 0.25. The roughness length increases 
rapidly with the wave amplitude at around u;/v'kc = 12. For stronger or weaker 
wind the effect of waves is less significant. For very short gravity-capillary waves 
(k/k, > l), the roughness is relatively insensitive to the wave amplitude and is not 
presented here. 

4. Wave motion in water 

waves, and $ for the wave-induced flow, by 
Let us define the stream function $b for the basic drift current in the absence of 

and rescale the surface displacement by 

< = &  (4.2) 

so that t = O( 1). Away from the viscous surface boundary layer, the outer solution, 
denoted by +@, is governed by the following vorticity equation: 

It can be shown (see Hara & Mei 1991) that the viscous boundary-layer correction 
leads to an apparent displacement of the free surface, and the kinematic boundary 
condition on the free surface becomes 

On the other hand the normal-stress boundary condition is not affected by the 
boundary-layer correction, and yields 

a v o  a($., + $."I a2$0 w 0  .'"@,+ $."I - Nc3 v2 % 
ay at ay ayax ax ay2 aY 

€- 

m 

= ~ € 3  C Pn ein(z-ct) +0(€4 ) ,  y = &. 
n=--OD 

At infinity the wave motion decays to zero; 

$, = 0, y = - 00. 

(4.5) 

We now solve the outer solution by perturbations. Since the lengthy procedure is 
similar to that for pure gravity waves (Hara & Mei 1991), only the final results are 
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presented. We mention in particular that at O(e), quadratic nonlinearity on the free 
surface introduces an apparent mean tangential stress contributed by wind/wave and 
wave/wave interaction. This leads to a slowly varying current diffusing vorticity 
downward. 

Finally, one gets from solvability conditions a pair of evolution equations for A and 
the stream function for a wave-induced inviscid current $20, valid for e3t = O(1). The 
first envelope equation is 

aA 1+3y 
1 + eK10 + e2(K11 + K50)  -+[ at, 2(y+ 1)s 

a2A + i(ea, + e 2 ~ 3 0 )  + i(eal + e 2 ~ 6 0 )  IAI2 A 
ax, 

- e2N( p - 2 + ip") A = 0, (4.7) 

and the second evolution equation is for the wave-induced current $,,(x,, yl, t,) : 

with boundary conditions 

- 
and $ 20 = o  , y = -  1 00, (4.10) 

where x, = ex, y1 = ey, and t ,  = et. All the coefficients in (4.7) are listed in the 
Appendix. The coefficients ao, al, Po, pl, and p2 are functions of the surface tension 
parameter y alone. All the K are the consequences of the mean water current. More 
specifically K, ,~ ,  K , ~ ,  . . . , K~~ are due to the basic wind-induced current $b without the 
waves, and K ~ , ,  K,,, K ~ ,  are due to the wave-modified current kq whose solution is given 
in (A 29). The coefficient K~~ depends on the higher-order modified current $30. The last 
term in (4.7) represents wind forcing and viscous dissipation, where p', pi are related 
to /?, /? defined in 9 3  by 

(4.1 1) 

Both p' and pi are of O(1) and are real nonlinear functions of the absolute wave 
amplitude IAl for prescribed wind shear and wavenumber, calculated numerically in 9 3. 
The real part p' and the imaginary part pi are responsible for the growth and the phase 
shift of the wave amplitude A respectively. 

With reference to (4.7) let us define the modified phase velocity c" and group velocity 
Eg as follows: 

(4.12) c" C + ec", c" = KO,, + €(KO, + KZo) +e2(Ko2 + K2, + K4,,) + 0(e3), 

and (4.13) 
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By introducing the transformation 
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A = &,r)exp[ -i l t lEdfl]  

t l  
with 

the evolution equation (4.7) is simpmed to 

= x , - /  Cgddt,, 7 = €tl 

(4.14) 

(4.15 a, b) 

+ci($) 2-d(,8'-2+ipi)A"= 0, (4.16) 
1 Yl-0 

where K ~ , , K ~ ,  are functions of the basic current @ b .  The equations for g2, are 
unchanged except that x1 is substituted by 6. 

If the effects of wind and viscosity are neglected (N  = P' = Pi = K~~ = K~~ = 0), these 
equations reduce to those by Hogan (1985). If surface tension vanishes (y = 0) the 
results in Hara & Mei (1991) for gravity waves are recovered. Note that in (4.16) only 
the fourth, fifth, and sixth terms may yield the asymmetric evolution of a wave 
spectrum over the timescale of €7 = O( 1). 

Before solving the evolution equations the coefficients K ~ , ,  and K ~ ,  must be calculated. 
Referring to the Appendix, first the functions go, and g,,  are solved by finite differences 
from (A 22), (A 24), and (A 27) with ub = e&+kb/ay given in $2. The results are then 
introduced in (A 13), (A 16), (A 17), (A 20) to calculate K ~ ,  and K ~ , .  In the range of 
parameters examined, K ~ ,  is always negative and K ~ ,  is mostly positive, except for the 
case of the longest wave (k /k ,  = 0.2) and very strong wind (u',/v'k, = 15) where K ~ ,  is 
also negative. 

The coefficients K,,, K ~ , ,  K*, in the phase velocity 2 and K ~ , ,  K ~ ,  in the group velocity 
Zg are also calculated from $.". The calculation of K , ~ ,  K,,, and K~~ depends on @q given 
in (A 29) which depends on the solution to the evolution equation (4.16) through the 
modified shear qo(7). The calculation of the phase velocity c" at O ( 2 )  requires 
knowledge of K , ~  which depends on the higher-order analysis in air. This will not be 
pursued in this study, since the evolution of the absolute wave amplitude (A1 can be 
solved without knowledge of the modified phase velocity (cf. (4.14)). 

5. Initial instability of sideband disturbances 
Based on the evolution equations (4.8k(4.10) (with x, replaced by E )  and (4.16), we 

now examine the initial growth of the Benjamin-Feir instability. First we solve for the 
spatially uniform Stokes wave train A ,  by setting a/a[ = g2, = 0 in (4.16). The solution 
may be written as 

A ,  = Bexp i [(al+e~60)B2-~N~i(B)]d7 (5.1) i s  
where the amplitude B satisfies 

aB/a7 - sN[P'(B) - 21 B = 0. (5.2) 
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In general B grows or decays slowly over the timescale of e-r = t ,  = O( 1) from its initial 
value which is set to be unity, i.e. E is set to be the initial wave steepness. 

To study the initial growth rate of instability, we let 

A” = A,(1 +A’) ,  q2,, = &,, (5.3) 

A’ = A:+iA;, (5.4) 

(5.5) 

where A’ and q;,, are small perturbations. Let A’ be further separated into real and 
imaginary parts 

both of which are assumed to be of the form 

A; = R~ a; ei(Kt--S27), A; = R~ a; ei(K5-Q7) Y 

where K > 0 is the wavenumber of the disturbances, and Q is the complex frequency. 
Then Q is solved to be 

to the accuracy of O(e). If wind and viscous dissipation are neglected ( N  = /3“ = pi = 
K,,, = K~~ = 0) in (5.6), Hogan’s result is recovered, 

(5.7) Q = -€Po K 3  + e/3] K +  (a: K 4  - 2a, a1 K 2  + ECCI,, K3)i. 

Q = & (a: K 4  - 201, K2)i = f [a: K2(K2  - 2 al/a,)li. 

If we further set E = 0, the nonlinear evolution equation reduces to the cubic 
Schrodinger equation (Djordjevic & Redekopp 1977) and 

(5.8) 

For instability Im(Q) > 0. For a,/ao < 0, the sidebands are stable according to the 
cubic Schrodinger equation. Referring to (A 1) and (A 2) for the coefficients a, and a,, 
this criterion is satisfied when 0.155 < y = (k /kJ2  < 0.5. In particular a1 becomes 
unbounded at y = 0.5. Hence 

k /k ,  < 0.393 : instability, 

0.393 < k /k ,  < 0.707: stability, 

0.707 < k /k ,  : instability. 

Note first that k /k ,  = 0.707 corresponds to Wilton’s ripple. In this case waves with 
wavenumbers k and 2k are resonantly coupled over the timescale of t ,  = et; the 
nonlinear Schrodinger equation breaks down. Janssen (1986) has shown that wind can 
trigger this subharmonic resonance (energy transfer from k /k ,  = 1.414 to k /k ,  = 
0.707), leading to period doubling. This case is excluded here. 

With the O(e) terms which include the wind effect, the threshold k/k ,  = 0.393 is 
modified by O(e), while the coefficient a, remains unbounded at k /k ,  = 0.707. 
Therefore there is no sideband instability for 0.393 + O(e) < k/k, < 0.707, and we only 
consider the unstable ranges from here on. 

Without wind and damping it has been shown by Hogan (1985) from (5.7) that 
the maximum sideband growth rate is reduced as e increases for relatively long waves 
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FIGURE 5. Instability growth rate Im (a) as a function of wavenumber K for various normalized 
friction velocities u;/v’k,; F: = 0.1 : (a) k /k ,  = 0.2, (b) k / k ,  = 0.3, (c) k /k ,  = 0.9. 

(k /k ,  < 0.393 + O(e)), but is increased for short waves ( k / k ,  > 0.707). We have found 
that the same trends remain at all the wind speeds which are within the range of 
our theoretical assumption. 

On the other hand at a given initial wave slope the influence of wind on the initial 
growth rate of the unstable mode is not trivial. We plot in figure 5 the growth rate 
Im (a) as a function of unstable wavenumber Kfor various wind stresses and for a fixed 
wave slope 6 = 0.1. For rather long waves k / k ,  = 0.2 and 0.3, the wavenumber Kof the 
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least-stable mode increases as the wind stress increases. However, no systematic trends 
are observed for the growth rate Im (Q) of the least-stable mode. For short waves with 
k/k, = 0.9, instability is strongly suppressed by wind. 

6. Nonlinear stage of Benjamin-Feir instability 
We now examine the nonlinear stage of sideband instability on the timescale o f t  = 

O(l/e3), by numerically integrating the coupled equations for the wave amplitude A" 
and the wave-induced current qz0. First the least-stable wavenumber K of the 
instability is calculated from the result in $5 for given relative wavenumber k/k,, 
normalized friction velocity u;/v'kc, and initial wave slope e of a uniform wave train. 
The initial condition for x i s  then specified so that the maximum of the disturbance IA'I 
is 0.1. We note that if the amplitude of the initial disturbance is reduced, the initial 
growth is delayed but the subsequent evolution remains similar. The pseudo-spectral 
method employed before by Lo & Mei (1985) is used, where x i s  expanded in a Fourier 
series with coefficients B,, v = 0, f 1, 5 2 , .  .. . For further details see Hara (1990) or 
Hara & Mei (1991). 

As a reference we first display in figure 6(u-c) the nonlinear evolution without wind 
or damping for e = 0.1. Recurrence is always present as in the case of gravity waves (Lo 
& Mei 1985). Near the time of maximum modulation, frequency downshift is apparent 
for long waves with k/k, = 0.2 and 0.3 but there is upshift for the short wave with 
k/k, = 0.9. The upshift also occurred at k/k, = 1 .O but a slight downshift was observed 
for very short waves with k/kc = 1.75 (Hara 1990). In all cases the downshift or up- 
shift phenomenon is only a transient phase of a cyclic process. 

We now examine the effect of wind and viscous damping. For each of these 
wavelengths, different wind intensities and wave steepnesses are studied. 

(i) k/k, = 0.3, u;/v'k, = 10 
This is a typical case of long waves and weak wind. From figure 2(b) the net growth 

rate becomes zero at (ka),, = 0.088. Let us examine two initial wave slopes (e). With 
the help of table 1, N is calculated from (2.16). 

(a) e = 0.1 ( N  = 0.37) (figure 7) 
By definition lae,. = Be, = (ka),,/a = 0.88. The time evolution of the zeroth, +first, 
fsecond harmonics (lBol, lBkll, IB+zl) are plotted in figure 7(a, b). At the beginning 
near-recurrence is observed with th; -first harmonic (lower sideband) larger than the 
+first (upper sideband). As the evolution proceeds the magnitude of the -first 
harmonic IK1l continues to grow while all other harmonics die out. At T = 80 the 
envelope becomes almost uniform, being dominated by Bpi. This is clear evidence of 
persistent frequency downshift. Towards the end of the computation time the 
magnitude of B-, approaches Be, = 0.88. In figure 7(c) the amplitude spectrum of the 
harmonics (IBJ, v = - 10-10) is plotted at 7 = 80, and compared to the initial spectrum 
indicated by crosses. After downshifting the spectrum remains narrow, indicating the 
uniform validity of the narrow-band assumption. 

(b) e = 0.045 ( N  = 4.0) (figure 8) 
In this case the initial wave amplitude is reduced. By definition Be, = (ka),,/e is now 
1.97; i.e. the amplitude of the uniform train would become 1.97 times as large as the 
original without sideband disturbances. Though the initial steepness is smaller, the 
ultimate steepness is comparable with the preceding case. From figure 5(b), 
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FIGURE 7. (a, b) Time evolution of lowest five Fourier components (IBJ, v = + 2 ,  k 1,O) of wave 
amplitude A .  (c)  Amplitude spectrum of wave amplitude A at 7 = 80. k /k ,  = 0.3, ui/v'k, = 10, 
E = 0.1, K =  3.14. 

wavenumbers up to 1.3-1.4 times that of the least-stable mode are also unstable at 
T = 0. Therefore for large T the maximum unstable wavenumber would be roughly 
2.6-2.8 times the initial least-stable wavenumber. In our calculation Fourier 
components with wavenumbers twice that of the initial disturbances (B*,) are 
therefore expected to become unstable for large 7. 

In the initial stage (T < 15) the -first harmonic B-, is dominant as in the former 
case. As the evolution proceeds, the -second harmonic B-, also begins to grow 
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FIGURE 8. As figure 7 but at 7 = 25. k / k ,  = 0.3, u',/v'k, = 10, e = 0.045, K = 3.68. 

steadily. The plot of the final amplitude spectrum figure 8(c) suggests that the peak 
frequency is now shifting to v = - 2 from Y = - 1, with the rest of the harmonics being 
relatively small. 

(ii) k / k ,  = 0.3, u;/v'k, = 12 
With the same wavenumber we now examine a stronger wind. The equilibrium wave 

steepness is calculated to be (ka),, = 0.132. Let us now consider two initial steepnesses. 
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(a)  e = 0.1 ( N  = 0.37) (figure 9) 
For this small increase in wind strength, the frequency downshift becomes even 
stronger than the case (1.1) which has the same initial wave slope. For large T the 
-first harmonic B-, becomes dominant and approaches the equilibrium amplitude 
Beg = 1.32. 
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(b)  8 = 0.045 ( N  = 4.0) (figure 10) 
For this case of smaller initial wave slope, the -second harmonic quickly takes over 
the initially dominant -first harmonic. The amplitude spectrum at T = 15 clearly 
shows that the -second harmonic is the peak frequency. 
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(iii) k / k ,  = 0.2, u',/v'k, = 10 

equilibrium wave slope is (ka),, = 0.107 (cf. figure 2a). 
We now examine a longer wave with two initial slopes for the weakest wind. The 

(a) E = 0.1 ( N  = 0.20) (figure 11) 
Qualitative features are similar to the case (i)(a) for shorter waves. Frequency 
downshift is evident. 

(b) E = 0.045 ( N  = 2.2) (figure 12) 
As the evolution proceeds, the peak of the spectrum shifts towards the -second 
harmonic. At 7 = 20 the amplitude spectrum (figure 12c) shows that the -third 
harmonic also has relatively large amplitude, although the spectrum is rather broad. 

(iv) k / k ,  = 0.9, u',/v'k, = 22 (figure 13) 
A much shorter wavelength in the second zone of instability is now examined. Since 

damping is now large, a much stronger wind is needed to see interesting physics. We 
present in figure 13 results for t: = 0.1 ( N  = 1.91). Throughout the evolution there is a 
weak frequency upshift, i.e. the upper sideband is slightly larger than the lower 
sideband. Thus the temporary upshift in the case without wind or viscous dissipation 
(figure 6c)  is now rendered permanent. For large time the +first harmonics slowly take 
over the fundamental harmonic. With a smaller initial wave slope or stronger wind, the 
results show more complicated evolution patterns with broader amplitude spectra. 
However, they no longer yield a clear pattern of permanent frequency upshift or 
downshift even after a long time. Therefore the permanent frequency upshift occurs 
only in a very narrow range of wind stress and wave steepness. 

We have also investigated the case of k / k ,  = 1.75 and u',/v'k, = 32-38. At such a 
short wavelength the air boundary-layer thickness b' becomes relatively large ( N 0.14). 
Consequently the contribution of the tangential stress to the wave growth rate becomes 
significant (see figure l), while the growth rate becomes less dependent on the wave 
steepness because the nonlinearity of the modulated air flow, which is estimated by 
E / # ,  is now smaller. Although the theory can easily be modified to include the 
tangential stress contribution, the resulting physics is less interesting because of the 
weak nonlinearity of the air flow. For example at u',/v'k, = 32 and t: = 0.173, the 
nonlinear evolution remains similar to the case of no wind/dissipation at small 7 with 
temporary downshift near the peak of the modulation. Only at very large 7 does the 
weak frequency downshift become permanent. When the initial wave steepness is 
decreased, or the wind stress is increased, the nonlinear evolution quickly yields a 
broader amplitude spectrum, hence violates the assumption of narrow-banded waves. 
These results are recorded in Hara (1990). 

Based on the preceding numerical experiments the effects of wind and viscous 
damping on the nonlinear evolution of sideband instability of gravity-capillary waves 
may be summarized as follows. 

(i) For relatively long gravity-capillary waves of k / k ,  = 0.2 and 0.3 in the first zone 
of instability, the evolution pattern is similar to that of gravity waves. Frequency 
downshift is evident in all cases examined. With a smaller initial wave amplitude the 
wave energy may downshift to the higher harmonics of the sideband. 

(ii) For a short wavelength k /k ,  = 0.9 in the second zone of instability, moderate 
wind and damping may enhance frequency upshift, although the range of permanent 
upshift is very limited. With a sufficiently short wavelength the permanent frequency 
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FIGURE 11. As figure 7 but at 7 = 60. k /k ,  = 0.2, u’,/v’k, = 10, E =  0.1, K = 2.17. 

downshift may prevail again. However, the tendency is very weak because of the weak 
nonlinearity of the modulated air flow. 

(iii) In general as the wind shear increases or the initial wave slope decreases, the 
evolution becomes more irregular and the amplitude spectrum broadens. 

So far our calculations have been performed with a stationary turbulent basic water 
current. We have also examined a viscous current of an error-function type, which 
penetrates deeper with time. Although the wind effect on the initial growth rate of 
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sideband instability is modified owing to different values of K ~ , ,  and K~, , ,  the subsequent 
nonlinear evolution remains similar. Details are given in Hara (1990). 

7. Concluding remarks 
The wind effect on the evolution of a two-dimensional narrow-banded gravity- 

capillary wave spectrum has been examined theoretically. The wind strength is 
assumed to be of such a magnitude that the initial growth of waves occurs on the 
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timescale of the asymmetric evolution of sidebands. The wave growth rate due to wind 
is found to decrease as the wave steepness increases at a fixed wind stress. This trend 
is more prominent for longer waves. 

By a perturbation analysis up to fourth order in wave steepness, we have modified 
Hogan’s evolution equations for the water wave amplitude A” and the wave-induced 
current gz0 valid on the timescale of t, = c3t 6 O(1). The magnitude of the wind- 
induced drift is at most comparable with the wave orbital velocity. Wind is found to 
suppress the initial growth of unstable sidebands for relatively short gravity-capillary 
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waves (k/k, = 0.9). It yields permanent frequency downshift after a long time for 
relatively long waves (k/k, = 0.2,0.3), as in the case for gravity waves, although this 
tendency is reversed for some short waves within a narrow parameter range. With 
stronger wind or smaller initial wave steepness the evolution of unstable modes 
becomes more irregular, and the spectrum of B, becomes broader. 

Since in nature and in the laboratory, gravity-capillary waves are more likely to be 
short crested, it appears worthwhile to extend the work of Janssen and the present 
theory by considering the effect of wind on the evolution of a resonant triad in different 
directions. 

This work has been supported by the Office of Naval Research through the Physical 
Oceanography Program (Accelerated Research Initiative on Surface Wave Dynamics) 
during the initial stage, and through the Ocean Engineering Program (Accelerated 
Research Initiative on Nonlinear Dynamics of Ocean Waves) during the final stage. 
Partial support has been received from National Science Foundation Programs of 
Fluids/Particulates/Hydraulic Systems and Ocean Engineering (Grant No. MSME 
8813121). Part of the writing was done while T.H. was a post-doctoral scholar at 
Woods Hole Oceanographic Institution. This is WHO1 contribution 7826. 

Appendix. Coefficients in the evolution equation 
The coefficients a and /3 are determined by y only: 

3y2+6y- 1 
a, = - 

8(y+ 1): ’ 

2y2+y+8 
a, = - 

16(y+ 1)q2y- 1)’ 

(7 - 1) (Y2+ 6y + 1) 
Po = 16(y+ 1); 

” = - 16(y+ l)f(2y- 1)’ ’ 

, 

3(4y4 + 4y3 - 97’ + y - 8) 

(y-1)(2yZ+y+8) 
32(y + 1); (2y - 1) ‘ P 2  = 

The coefficients K are determined by the mean water current: 



ago0 az$b 

aY2 a Y  
487( 1 - 27) - + (- 28y2 + 167 + 8)-- 

+ 2( -40y2 + 347 + 11) ?$]y-O +:Im Zs0 ey dy, (A 16) 

where the coefficients Z30-Z70 in the integrands are defined as 
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and the functions go,( y ) ,  go,( y ) ,  glo( y ) ,  g20( y ) ,  g3o(y) satisfy the following governing 
equations : 

(A 22) 

(A 23) 

a2goo/ay2 -goo = - $ ey a3kb/ay3, 
a2gol /a~2-go1 = -ze 1 y a 3  P V ~ Y ~ ,  

with boundary conditions 

go, = go, = g,, = g,, = g,, = 0, Y = 0, -a* (A 27) 
To obtain the modified mean current $q we first write the apparent mean tangential 
stress as 

where eq is the average of the left-hand side over x1 or t,. Then the second derivative 
of @q is solved to be 

and the first derivative is obtained by integrating (A 29) from y = - co toy = y .  Details 
are given in Hara & Mei (1991). 
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